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In a two-phase fluid layer heated from below, two instability mechanisms are present, the 
ordinary Rayleigh instability associated with thermal expansion and a phase change in- 
stability driven by the density difference between the phases. A stability analysis is presented 
for the combined effects of these instability mechanisms, and the critical Rayleigh number is 
determined as a function of the properties of the phase transition. The results are applied to 
the olivine-spinel phase change in the mantle, and it is concluded that this phase change in 
the presence of a negative temperature gradient may intensify deep mantle convection. The 
elevation of the phase-change boundary within the descending cold lithospheric plate at 
ocean trenches is a finite amplitude example of the phase-change instability. The additional 
gravitational body force on the slab due to the elevation of the phase boundary is comparable 
to that of thermal contraction. 

The concept of plate tectonics is now well 
accepted. By postulating relative movement 
between segments of the rigid, spherical outer 
shell of the earth, many geological phenomena 
can be explained. A problem of critical impor- 
tance is the nature of the driving mechanism 
for plate tectonics. This driving mechanism 
must provide the energy dissipated in earth- 
quakes and volcanism. The only steady-state 
source of energy of sufficient magnitude appears 
to be the heat generated by the radioactive 
elements in the earth's mantle. Other possi- 
ble energy sources are the heat generated by 
the formation of the earth's core or other con- 

tinuing differentiation processes. 
•eating can result in large-scale motions only 

if a body behaves like a fluid. There is ample 
evidence from uplift phenomena that over long 
periods of time the earth's mantle does exhibit 
fluidlike behavior. Physical mechanisms for this 
behavior of a crystalline solid are also available 
[Gordon, 1965; Weer•man, 1970]. 

If a fluid with a positive coefficient of thermal 
expansion is heated from below, thermal con- 
vection will occur if the Rayleigh number 
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ceeds a critical value. Since it was first proposed 
by Holmes [1931] as an explanation for conti- 
nental drift, this type of thermal convection 
has been the favored mechanism for driving 
large-scale surface displacements. A number of 
authors [e.g. Pekeris, 1935; Knopo#, 1964] 
have shown that the Rayleigh number for the 
upper mantle exceeds the critical value and 
others [e.g. Turcot•e and Oxburgh, 1967; 
burgh and Turcoite, 1968; McKenzie, 1969] 
have discussed the structure of convection cells 
in the mantle. 

Evidence from both seismology [Johnson, 
1967] and geochemistry [Ringwood, 1970] 
indicates that an olivine-spinel phase change 
occurs at a mean depth near 400 km. The den- 
sity change across this phase transition is about 
7%. For comparison, the density change asso- 
ciated with a temperature difference of 1000øK 
is 3%. Since density differences drive mantle 
convection it is expected that the olivine-spinel 
phase change will have an important effect. Seis- 
mic evidence also indicates another important 
solid-solid phase change at a mean depth of 
650 km. Also, significant density differences 
would be associated with partial melting in the 
mantle. 
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For the o]ivine-spinel phase change the dense 
phase (spinel) lies beneath the light phase (oli• 
vine), and heat is evolved when going from oli- 
vine to spinel. If this phase transition is 
described by a univariant system, then in ther- 
modynamic equilibrium the phase-change boun- 
dary must lie on the C]apeyron curve. The slope 
of this curve dp/dT is positive, and the co- 
efficients of thermal expansion for both phases 
are also positive. Under isothermal conditions 
such a phase boundary is stable. Consider an 
element of fluid that moves downward through 
the phase-change boundary. When the fluid 
passes through the boundary, heat is evolved, 
the fluid element is heated, its density de- 
creases because of thermal expansion, and there 
is an upward stabilizing body force. A second 
stabilizing effect is due to the displacement of 
the phase boundary. Since the phase boundary 
must lie on the Clapeyron curve, assuming ther- 
modynamic equilibrium, the heat evolved when 
the fluid element passes through the phase- 
change boundary will cause the boundary to 
be displaced to a greater depth (larger hydro- 
static pressure). With the boundary displaced 
downward, the lighter fluid above the phase 
boundary will experience an upward, stabilizing 
hydrostatic head relative to an undisturbed 
column of fluid. 

K•o•o•/ [1964] has approximated the phase- 
change boundary as a re•ion of nonadiabatic 
density distribution and concluded that the 
phase boundary acrs as a 'positive barrier to 
convection.' ¾½•hoog½• [1965] considered the 
penetration of an element of fluid through a 
phase-change boundary and concluded that the 
phase boundary acts as an 'obstacle to convec- 
tion.' ¾½•g Me•a½s½ [1962] carried out a par- 
tial analysis of a continuous phase change in a 
descendin• element of fluid and concluded that 
•he phase change could contribute to instability. 

$•h'•5•½• ½• ½1. [1970] have shown that the 
olivine-spinel phase chan•e may be destabilizin• 
in the presence of a negative temperature gradi- 
ent. A•ain, consider a fluid element that moves 
downward through the phase change. Because of 
the zero-order temperature •radienf, the fluid 
element approachin• the phase boundary will 
be cooler than undisiurbed fluid at the phase 
boundary. Assuming thermodynamic equilibrium 
so that the phase boundary lies on the Clapey- 
ton curve, the phase boundary will be displaced 

upward to a lower hydrostatic pressure. With 
the phase-change boundary displaced upward, 
the heavier material below lhe boundary pro- 
vides a hydrostatic pressure head tending to 
drive the flow downward, leading to instability. 
This instability acis in addition to the tray- 
leigh instability. However, as discussed above, 
the downward flow of fluid through the bound- 
ary releases heat, thus tending to warm the 
fluid and return the phase boundary to its un- 
perturbed location. The negative temperature 
gradient promotes instability, whereas the re- 
lease of heat in the phase change promotes 
stability. 

The effect of this phase change on mantle con- 
vection can be seen in discussing the descend- 
ing slab of cold lithosphere beneath an oceanic 
trench. Since this descending slab is cold, the 
olivine--spinel phase change will occur at a 
shallower depth in the slab than in the adjacent 
mantle. The high-density spinel phase will give 
an additional body force on the slab that will 
help to pull it down into the mantle. 

The phase-change instability was first dis- 
cussed by Busse and $chuber• [1971]. In the 
present paper additional results are presented 
for the combined effects of the Rayleigh insta- 
bility and the phase-change instability. The re- 
sults are applied to the olivine-spinel phase 
change in the mantle. 

Consider the stability against infinitesimal 
perturbations of a static two-phase fluid layer 
confined between the horizontal planes z = --+d 
with a horizontal univariant phase boundary 
separating the two phases at z = 0. The fluid 
is assumed to be in thermodynamic equilibrium; 
the location of the phase boundary is thus de- 
ternfined by the intersection of the CIapeyron 
curve with the pressure-temperature curve for 
the fluid layer. In the perturbed state the phase 
boundary will be distorted from its initial posi- 
tion at z = 0. The slope of the Clapeyron curve 
is given by 

where p is the pressure, T is the absolute tem- 
perature, Ap is the change in density at the 
phase transition p•-p• (the subscripts 1 and 2 
refer to •he upper •nd l'ower phases, respec- 
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tively), and Q is the energy per unit mass re- 
quired to change material of phase 2 into ma- 
terial of phase 1. Thus, if the less dense phase 
lies above the more dense phase, the slope of 
the pressure-temperature curve exceeds the 
slope of the Clapeyron curve, and Q and Ap 
are both positive. 

We assume that Ap << p•, .p.• and that both 
phases have the same values of absolute vis- 
cosity /z, thermal conductivity k, specific heat 
at constant pressure c•, thermal diffusivity •, 
and kinematic viscosity v (/z, k, cp, •, and v are 
constants). Each phase is assumed to be a 
Boussinesq fluid, i.e., the density of each phase 
is regarded as constant except insofar as the 
thermal expansion of the fluid provides a force 
of buoyancy. The value of the coefficient of 
thermal expansion a is assumed to be constant 
and the same for both phases. The difference 
in density between the two phases is taken into 
account in determining the distortion of the 
phase-change boundary and in the pressure- 
boundary condition at the phase-change •nter- 
face. Two instability mechanisms are present 
in this model, the ordinary Rayleigh instability 
associated with the thermal expansion of the 
fluid and a phase-change instability driven by 
the density difference between the phases. 

In the undisturbed state there are a constant 

negative temperature gradient of absolute mag- 
nitude fi throughout the fluid layer and pressure 
gradients --p•g and --p..g in the upper and 
lower phases, respectively (g is the acceleration 
of gravity). The static state is, of course, hori- 
zontally homogeneous. As noted previously, if 
less dense fluid is above more dense fluid 

The linearized equations for the velocity 
perturbations u•.,, the temperature perturbations 
•., and the pressure perturbations •.• are 
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The adiabatic temperature gradient is assumed 
to have the same value for both phases. The 
right-hand side of equation 5 is to be evaluated 
at the position of the undisturbed phase bound- 
ary. In writing the momentum and energy 
conservation equations, equations 3 and 4, re- 
spectively, we have assumed that the state of 
marginal stability is given by O/8t = 0, i.e., 
that the principle of exchange of stabilities is 
valid. 

Without loss of generality we consider the 
two-d•ensionaI periodic solutions of equations 
24 with horizontal wave number l. The vertical 
velocity perturbations are solutions of 

- l • w•,• = • (6) KP ' 

The horizontal boundaries at z = •d are •aken 
to be free surfaces. Thus we require 

w- 0z• - 0 at z = •d (7) 
The symmeiric solutions of equation 6 subjsct 
to condiiions of equation 7 are 

where 

n= 1,2,3 (9) 

•(• - •)• 
• = (•0) 

A. •re constants of iniegr&t•on, and the upper 
•nd 1o•er si•s on •he right-hand side of equa- 
tion 8 refer to regions • and 1, respectively. 

•ith the solution for the verfioal velooity 
perturbation (8), •e c•n determine the tem- 
perature pe•urb•fion from (•) and the bound- 

(•) •ry conditions 

•:o • •=m4 (•) 
The symmetri• solutions for the temperature 
perturbations are 

(1•) 

•here the upper and lo•er s•gns refer •o regions 
• •nd 1, respectively. 

--• V•r•.• + •V•'u•.• + ga0•.•.i: 0 (3) 

-(2 - •3w•,..: •v•0•,• (4) 
where p • p• • o,, w is the vertical component 
of the perturbation velocity, • is a unit vector in 
the positive z direction, and • is the adiabatic 
temperathe gradient given by 

{,oo 
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At the phase boundary there must be con- 
tinuity of mass flow across the boundary, tem- 
perature and tangential stress. In our linear 
analysis these continuity conditions may be 
applied at z ---- 0. Thus 

w• = w,. • = • (13) 
Oz •. -- 8z 2 at z = 0 

The solutions (8) and (12) satisfy conditions 

There are three remaining conditions at the 
phase boundary. The tangential velocity must 
be continuous at the interface between the 

phases. The linearization of this condition yields 

8z 8z z = o 

As a result of the mass flux across the phase- 
boundary, energy will be released or absorbed 
depending on the direction of the phase change. 
At the phase boundary an amount of energy 
pwQ is absorbed per unit time and per unit 
area. The energy absorbed or released at the 
interface must be balanced by the difference in 
the perturbation heat flux into and out of the 
phase boundary. This linearized condition is 

pwQ = \Oz' az/ at z = 0 (15) 
Finally, the normal stress must be continuous 
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phases and the displacement of the phase bound- 
ary. This pressure difference forces the flow that 
can result in a phase change driven instability. 

The boundary between the phases must lie 
on the CIapeyron curve; V can thus be related 
to the temperature perturbations and pressure 
perturbations by 

gP• -- • •7P, -- • 

where the temperature and pressure perturba- 
tions in (17) are evaluated at z -- 0, since the 
displacement of the phase boundary is infinitesi- 
mal. Equation 17 is easily understood when 
written in the form 

(.wh- g p•,• (.w%- g P2•7• 

The numerators are the differences in pressure 
between • point located at z = V in the per- 
turbed state and • point located at z = 0 in 
the unperturbed state. The denominators are 
sim•r temperature differences. 

•ISCUSSION OF T•E •OL•TION 

When the solutions, equations 8 and 12, are 
substituted into the interface conditions, equa- 
tions 1•16, • set of algebraic equations for the 
constants A,• (n = 1, 2, 3) is obtained. For th•s 
se• •o be solwble the determinent of the co- 

e•cients must be zero. This provides an eigen- 
value equation for the problem as follows 

_____ S(Sff-- L•) • tanh 8• 4- 2• s 

2•;• L•.)• •%- (6/' -- -• Ro tanh •x 

at the phase boundary. This condition may be 
written 

w'x -- w,. = -- g•lAp at z = 0 (16) 

where V is the vertical displacement of the 
distorted phase boundary. In condition (16) the 
difference in perturbation pressure between the 
two phases is equated to the hydrostatic head 
generated by the density difference between the 

where 

_ (20) 
3 

Re = agd Q/c• (21) 
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The parameter R•, the ordinary Rayleigh num- 
ber, enters equation 19 through the 3•. The 
parameter $ is the ratio of the fractional den- 
sity change in the phase transition to the frac- 
tional density change associated with thermal 
expansion. Since pg/y ;> fi and Ap • 0 when 
the heavy phase lies below the light phase, S 
is a positive quantity. Since S measures the 
magnitude of the fractional density change in 
the phase transition relative to that associated 
with thermal expansion, it is clear that 

') 
is the appropriate Rayleigh nmnber for the 
phase-change density difference. Just as the 
ordinary Rayleigh number R• measures the 
effectiveness of density differences due to ther- 
mal expansion in forcing convective instability, 
so the phase change Rayleigh number 
measures the effectiveness of phase change den- 
sity differences in driving instability. The param- 
eter R• is still another Rayleigh number based 
on the temperature difference Q/c, instead of 
the destabilizing temperature difference across 
the fluid layer. This parameter measures the 
stabilizing influence of the latent heat in the 
phase transition. 

The limiting cases e• -, 0 and • --•,, e• -• 0 
and fi :/= fi,, • -• 0 and • -• fi• have been 
studied in detail by Busse and Schuberi [1971]. 
The results of the analysis for the case • --• 0, 
•9 -v• fi• have been applied to mantle phase 
changes by Schubert et al. [1970]. This case is 
of particular interest since for • -- 0 the ordi- 
nary Rayleigh instability is not present, and 
one may focus on the phase change as the source 
of instability. As previously discussed, the inflow 
of relatively cold material from above the phase- 
change boundary (owing to the zero-order tem- 
perature gradient) forces the interface to a re- 
gion of lower hydrostatic pressure, i.e., upward. 
With the interface displaced upward, the heavier 
material below the interface gives a hydrostatic 
pressure head tending to drive the flow down- 
ward, leading to instability. However, the down- 
ward flow of fluid through the interface re- 
leases heat, thus tending to warm the fluid and 
return the phase boundary to its unperturbed 
location. The inflow of cold material tends to 

promote instability, whereas release of heat by 
the phase change promotes stability. The ratio 
R•/RQ provides a quantitative measure of 
the opposing effects. It is important to note 
that in regions of downward flow the phase 
boundary is displaced upward and in regions of 
upward flow the phase boundary is moved 
downward. 

In the general case, the Rayleigh number 
is given by equation 19 as a function of the 
dimensionless horizontal wave number L and 
the parameters S and Re. For given values of 
•q and Re, a particular value of L will yield a 
minimum value of R•. Values of this minimum 
critical Rayleigh number R•o•, for the sym- 
metric case are given in Figure ! as a function 
of R• for various values of the parameter •q. 
For R• = •q = 0 there is no phase change, and 
we recover the case of ordinary Rayleigh insta- 
bility for which R•o,•, = 27•r4/2 ' = 41.094 
[Chandrasekhar, 1961]. In the limit c• --• 0, 
and Ro -• 0, S --, c• and R•S --• 40.923 for 
R•/R• -- 0 [Busse and Schubert, 1971; Schubert et 
al., 1970]. In the ordinary Rayleigh instability, 
the density change due to thermal expansion is 
spread throughout the fluid layer. In the phase 
change instability of a fluid with a - 0, the 
density change occurs at a single position in the 
fluid. The Rayleigh number for the former prob- 
lem can be found analytically, whereas for the 
latter the determination of the Rayleigh number 
requires the numerical evaluation of a tran- 
scendental expression. It is remarkable that the 
two Rayleigh numbers differ by only a few per 
cent. 

Since Ro represents the stabilizing effect of 
latent heat release at the interface, it is under- 
standable that as the parameter Ro increases 
the critical Rayleigh number for a fixed value 
of S also increases. _ks can be seen from Figure 1, 
for sufficiently large R• the critical Rayleigh 
number becomes insensitive to the value of 

Also, for sufficiently large R• the critical Ray- 
leigh number for symmetric convection (Figure 1) 
exceeds the critical Rayleigh number for anti- 
symmetric convection 657.5 [Chandrasel•har, 
1961]. We find from Figure 1 that R•ø,,, de- 
creases as S increases for fixed R•. This reflects 
the fact that as S increases the fractional density 
change associated with the phase transition 
becomes increasingly significant as compared 
with the density change associated with thermal 
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expansion, and the phase change plays a more 
important role in driving the instability, thus 
reducing the critical Rayleigh number. For a 
wide range of values of Ro and S, the critical 
Rayleigh number for symmetric convection 
through a phase change is lower than the critical 
Rayleigh number for a s'mgle-phase fluid. 

STABILITY OF THE I•AIWTLE 

The results of the above calculations will now 

be applied lo lhe earth's mantle. A stability 
calculation will be carried out with a phase 
change present, and the results will be com- 
pared to the calculation without a phase change. 

The olivine-spinel phase change will be ap- 
proximated by a s univariant phase-change bound- 
ary at an undisturbed depth of 400 km; we 
therefore take d = 400 kin. Following Ring- 
woo• [1970] and others, the mantle above the 
phase boundary is taken to be 75% olivine with 
a Mg.•SiO, to Fe•SiO, ratio of 9 to 1. There 
is some uncertainty about the properties of the 
olivine-spinel phase change. To specify this 
phase change it is sufficient to give the change 
in specific volume A• and the slope of 
Clapeyron curve ¾. For forsteritc (Mg•Si0,), 
the calculated values of Ahrens and Syono 
[1967] are zkv = 2.8 cm'/mole and ¾ = 50 
b/øK; the extrapolated experimental values of 
Akimo•o and Fufisawa [1968] are Av = 3.3 
cm'/mole and ¾ = 62 b/ø•, and the extrapo- 
lated experimental values of Ringwood and 

Major [1970] are Av = 4.6 cm•/mole and ¾ 
30 b/øK. On the basis of these values we take 
Ap/p -- 0.08 and y = 40 b/øK. From equation 
1, with T = 1800øK at the phase-change bound- 
ary, the heat of reaction is Q = 40 cal/g. For 
other mean properties of the upper mantle we 
take a == 3 X 10 -• øI{-•, g -- 10 a cm/sec '•, 
3.5 g/era •, % -- 0.3 cal/gøK, and n = 10-" em-•/ 
sec. 

In the analysis given above, the critical Ray- 
leigh number R• has been given as a function 
of the parameters S and Ro. Using the proper- 
ties given above, the minimum value of the tem- 
perature gradient ]•-]g, that will lead to insta- 
bility wilI be determined as a function of the 
kinematic viscosity. If ]g¾/pg << 1, then the 
parameter S -- 0.76. For a particular viscosity 
Ro is evaluated, and the critical Rayleigh num- 
ber R• is determined from Figure 1. This criti- 
cal Rayleigh number gives the minimum value 
of the temperature gradient that will lead to 
convection. If the value of/• is such that 
pq ----- 0 (1) then the calculation must be iter- 
ated. 

The critical temperature gradient ]•-B• is 
given as a function of kinematic viscosity in 
Figure 2. The dashed line is the stability curve 
for a layer of fluid of thickness 2d without a 
phase change (Rayleigh stability). The solid 
line to the right of point zi is the stability curve 
for a layer of fluid with a phase change as de- 
term_;ned above. To the left of point ,4 the solid 
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Fig. 2. The minimum critical superadiabatic temperature gradient for instability in the 
mantle as a function of kinematic viscosity. The dashed line is the stability curve for a mantle 
without a phase change (Rayleigh stability). The solid line is the stability curve for a mantle 
with the olivine-spinel phase change. To the left of point A the stability curve for double-cell 
convection above and below the phase boundary lies below the stability curve for convection 
through the boundary. 

line is the Rayleigh stability curve for a fluid 
layer of thickness d. In this region the stability 
curve for double-cell convection lies below the 

stability curve for convection through the phase 
boundary. 

To the right of point B the phase change is 
alestabilizing (the solid line lies below the dashed 
line). Between points .4 and B the phase change 
is stabilizing but convection takes place through 
the phase-change boundary. To the left of point 
.4 the phase change is absolutely stabilizing and 
convection does not penetrate the phase bound- 
ary. It should be emphasized that these results 
are based on a linearized stability analysis and 
are valid only for small amplitude convection. 
Also the assumption of constant viscosity is 
probably not a good approximation for the up- 
per mantle. However, the results do show that 
the olivine-spinel phase change may be desta- 
billzing, partially stabilizing, or an effective 
barrier to convection. In the absence of con- 
vection the geothermal gradient in the upper 
800 km of the mantle should be in the range 
lø-5øK/km [Schubert et al., 1969]. From 
Figure 2 we see that this is the range in which 
the phase change is alestabilizing. Therefore the 
phase change may lead to convection in the 

deeper mantle where the viscosity is expected 
to be in the range v -- 10 -•' -- 10 • cm'/sec. 

FINITE AMPLITUDE CONVECTION 

As a further indication of the effect of the 

olivine-spineI phase change on mantle convec- 
tion, we consider the phase change in the de- 
scending slab of lithosphere beneath oceanic 
trenches. A typical temperature profile for the 
mantle [T'urcot•e and Oxburgh, 1969] is given 
in Figure 3. The Clapeyron curve is included 
as a dashed line with a constant slope corre- 
sponding to ¾ -- 40 b/øI<. The Clapeyron curve 
intersects the mantle temperature profile at • 
mean depth of 400 kin. Temperature profiles 
for the descending slab have been calculated 
by Oxburgh and Turcoite [1970]. The minimum 
temperature in the slab as a function of depth 
is also included in Figure 3. If the slab is in 
thermodynamic equilibrium, the phase change 
will take place in the slab where the Clapeyron 
curve intersects the temperature profile for 
the slab. From Figure 3 we see that this occurs 
at a mean depth of 290 kin. The olivine-spineI 
phase boundary is elevated up to 100 km in the 
descending slab relative to the rest of the man- 
tle. The additional dense spine1 within the slab 
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will exert a body force tending to drive the slab 
down into the mantle. This is a finite ampli- 
tude example of the phase-change instability 
discussed above. 

We next estimate the gravitational body force 
on the slab due to the elevation of the phase 
boundary and compare this force with the body 
force due to the thermal contraction of the 

slab. For a mean slab width w = 50 kin, a 
depth l = 700 kin, and a mean temperature 
difference relative to the surrounding mantle 
AT = 700 øK, the gravitational body force on 
the slab per unit length due to thermal con- 
traction is (•z = 3 X 10 -• øK -• and p = 3.5 
g/era •) 

F, = gwlpa AT = 2.5 X 10 • dynes/cm 

With an additional depth of spinel Ah = 100 
km and with Ap/p -- 0.08 for the phase change, 
the additional gravitational body force per unit 
length due to the elevation of the phase-change 
boundary is 

F•c = gwAh Ap = 1.5 X I0 •6 dynes/cm 

It is seen that the body force on the descending 
slab due to the elevation of the phase boundary 
is nearly as large as the force on the slab due 
to thermal contraction. Since the sinking of the 
cold slab into the mantle owing to thermal 

contraction is a form of finite amplitude l•ay- 
leigh convection, this calculation shows that 
finite amplitude convection due to the phase 
change instability plays a significant role in 
mantle convection. 
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