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Penetration of Alfv·en waves into an upper stably-strati�ed
layer excited by magnetoconvection in rotating spherical

shells

Shin-ichi Takehiro
Research Institute for Mathematical Sciences, Kyoto Univeristy, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

The penetration of magneto-hydrodynamic (MHD) disturbances into an upper strongly

strati�ed stable layer excited by magnetoconvection in rotating spherical shells is inves-

tigated. An analytic expression for the penetration distance is derived by considering

perturbations of a stably strati�ed rotating MHD Boussinesq �uid in a semi-in�nite

region, with the rotation axis and a uniform magnetic �eld tilted relative to the gravity

axis. Solutions for the response to MHD disturbances applied at the bottom bound-

ary show that the disturbances propagate as Alfv·en waves in the stable layer. Their

propagation distance is proportional to the Alfv·en wave speed and inversely propor-

tion to both the arithmetic average of viscosity and magnetic di�usion and the total

wavenumber of the disturbance. The derived expression for penetration distance is in

good agreement with the numerical results for neutral convection in a rotating spher-

ical shell with an upper stably strati�ed layer embedded in an axially uniform basic

magnetic �eld.

Keywords: penetration distance, planetary �uid core, dynamo, geomagnetic secular

variation

1. Introduction1

Recent seismological observations have indicated the existence of a stably strati�ed2

layer below the core-mantle boundary (CMB) of the Earth (e.g. Lay and Young, 1990;3
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Hel�rich and Kaneshima, 2004; Tanaka, 2007; Hel�rich and Kaneshima, 2010). It4

has also been argued that there exists a stable layer in the upper part of the �uid core5

of Mercury (e.g. Christensen, 2006). It was hypothesized that the composition of the6

stable strati�cation may originate from the accumulation of light elements released7

from the inner core and/or through barodi�usion below CMB (e.g. Gubbins and Davies,8

2013; Hel�rich and Kaneshima, 2013). Thermal e�ects have also been discussed based9

on the recently revised value of thermal conductivity under core conditions (e.g. Pozzo10

et al., 2012).11

It is considered that in the unstable layer below the stably strati�ed layer, columnar12

convection elongating in the direction of the rotation axis develops due to the domi-13

nant e�ect of the Coriolis force. It is this that generates the intrinsic magnetic �eld14

of the planet through the dynamo process. However, since convective motion is sup-15

pressed in the stable layer, the associated generation of a magnetic �eld is expected to16

be weaker. The e�ects of the existence of the upper stable layer on the generated mag-17

netic �eld have been investigated numerically using magneto-hydrodynamics (MHD)18

rotating spherical shell models; it was shown that the stable layer acts as a low-pass19

�lter on the magnetic �eld, allowing small-scale magnetic �eld components to di�use20

e�ciently (e.g. Christensen, 2006; Christensen and Wicht, 2008; Nakagawa, 2011). In21

other models, however, �ltering of the magnetic �eld does not occur due to strong zonal22

�ows generated in the stable layer (Stanley and Mohammadi, 2008).23

The extent of the penetration of the MHD disturbances excited by deep convective24

motion is one of the key issues in the MHD of stably strati�ed layers related to the25

generation of an intrinsic magnetic �eld through the dynamo process. Furthermore,26

it also plays a part in the formation of geomagnetic secular variations. Takehiro and27

Lister (2001) derived a theoretical expression for the penetration distance of columnar28

convection into the upper stable layer in non-magnetic cases �NoMag:29

�NoMag =
2

N

�
1

KH
; (1)

where 
 is the angular velocity of the planet, N is the Brunt-V¤ais¤al¤a frequency of the30

stable layer, and KH is the horizontal wavenumber of the disturbance. The scaling31

of the penetration depth in magnetic cases, however, is not yet known. Therefore,32
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Figure 1: Schematic of the system considered.

the present paper derives a theoretical expression for the penetration depth of MHD33

disturbances in the outer stable layer induced by convective motions in the layer below,34

in the presence of the magnetic �eld.35

2. Properties of MHD waves in a rotating strongly strati�ed layer36

Let us consider a stably strati�ed rotating MHD Boussinesq �uid in the semi-37

in�nite region r � rb as shown in Fig. 1, wherer r = rb is the boundary between38

the unstable and stable layers. The rotation axis is tilted relative to gravity (r-axis),39

considering the situation at mid and high latitudes of a spherical shell. In addition, a40

uniform magnetic �eld, which is also tilted relative to gravity, is imposed. The lin-41

earized equations about a state of rest are the following:42

@u
@t

+ 2
 � u = �
1
�0

rp + �gTer +
1

�0�
(B0 � r)b + �r2u; (2)

@b
@t

= (B0 � r)u + �r2b; (3)

@T
@t

+ �ur = �r2T; (4)

r�u = 0; r�b = 0: (5)

Here, u is the velocity, ur is the vertical component of velocity, p is the pressure distur-43

bance, T is the (potential) temperature, 
 is the rotation of the system, � is the thermal44

expansion coe�cient, g is the acceleration due to gravity, er is a unit vector in the45
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vertical (r) direction, � is the permeability, �0 is the density, B0 is the imposed basic46

magnetic �eld, b is the magnetic �eld disturbance, � is the kinematic viscosity, � is the47

magnetic di�usion coe�cient, � is the thermal di�usivity, and � is the basic vertical48

temperature gradient.49

From the bottom boundary, i.e. r = rb, a disturbance in the form of eikx+ily�i!t
50

is introduced, where k; l and ! are wavenumbers in the x and y directions and the51

frequency of the disturbance, respectively.52

By operating er � r� and er � r�r� on (2), we can remove the pressure disturbance.53

Furthermore, operating er� and er � r� on ( 3) yields54

@�r

@t
� (2
 � r)ur =

1
�0

(B0 � r) jr + �r2�r; (6)

@
@t

r2ur + (2
 � r)�r

=
1

�0�
(B0 � r)r2br + �gr2

HT + �r2r2ur; (7)

@br

@t
= (B0 � r)ur + �r2br; (8)

@ jr
@t

=
1
�

(B0 � r)�r + �r2 jr; (9)

where �r = er � (r�u) is the vertical component of vorticity, br = er � b is the vertical55

component of the magnetic �eld, jr = er � (r�b)=� is the vertical component of electric56

current, and r2
H = r2 � @r@r is the horizontal Laplacian operator.57

First, let us investigate the MHD wave properties by neglecting viscosity and dif-58

fusion. Assuming that the variables are proportional to eikx+ily�i!t � eimr, we can obtain59

the following dispersion relation from Eqs. (4), (6), (7), (8), and (9):60

!4 �
2
66664
4(
 � k)2

K2 +
N2K2

H

K2 + 2(VA � k)2
3
77775 !2 + (VA � k)2

2
66664(VA � k)2 +

N2K2
H

K2

3
77775 = 0; (10)

where k = (k; l; m) is the wavenumber vector, K2 = k2 + l2 +m2 is the square of the total61

wavenumber, K2
H = k2 + l2 is the square of the horizontal wavenumber, N =

p
�g�62

is the Brunt-V¤ais¤al¤a frequency, and VA = B0= p�� is the Alfv·en wave speed. Solving63

Eq. (10) gives64

!2 =
B �

p
B2 � 4C
2

;
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B =
4(
 � k)2

K2 +
N2K2

H

K2 + 2(VA � k)2;

C = (VA � k)2
2
66664(VA � k)2 +

N2K2
H

K2

3
77775 :

Further assuming that the stable strati�cation is su�ciently strong such that (VA � k)2 �65

N2K2
H=K2, which gives B � C, then,66

!2 =

8>>>>>>>>>>><
>>>>>>>>>>>:

4(
 � k)2

K2 +
N2K2

H

K2 + 2(VA � k)2;

(VA � k)2
2
66664(VA � k)2 +

N2K2
H

K2

3
77775

4(
 � k)2

K2 +
N2K2

H

K2 + 2(VA � k)2
:

(11)

The �rst mode is the inertia gravity waves modi�ed by the imposed magnetic �eld (the67

fast mode) and the second is the slow waves (the slow mode).68

The dispersion relation of the slow waves can be simpli�ed when we assume 4(
 �69

k)2=K2 � N2K2
H=K2:70

!2
slow � (VA � k)2; !slow � �VA � k: (12)

This indicates that the slow mode is the Alfv·en waves (Alfv·en, 1942).71

When the frequency of the disturbance given at the bottom boundary ! is su�-72

ciently small, the fast modes cannot propagate into the stable layer (evanescent). In73

this case their penetration distance can be estimated as74

4(
 � k)2

K2 +
N2K2

H

K2 � 0; (13)

which leads to the expression for the non-magnetic case derived by Takehiro and Lister75

(2001) (Eq. (1)).76

On the other hand, the slow modes can propagate into the stable layer in the direc-77

tion of the imposed magnetic �eld (wavy) however small the frequency of the distur-78

bance is. These slow modes are the Alfv·en waves whose �uid motion is restricted to79

the horizontal direction due to the strong strati�cation. These waves can be expressed80

by Eq. (6) with ur ! 0 and Eq. (9).81
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3. Penetration distance of the Alfv·en waves82

The penetration distance of the Alfv·en waves can be estimated by including the83

e�ects of viscosity and di�usion. The governing equations for the Alfv·en waves are84

the following:85

@�r

@t
=

1
�0

(B0 � r) jr + �r2�r; (14)

@ jr
@t

=
1
�

(B0 � r)�r + �r2 jr: (15)

By taking the � coordinate in the direction of the imposed uniform magnetic �eld, the86

governing equations become87

@�r

@t
=

B0

�0

@ jr
@�

+ �r2�r; (16)

@ jr
@t

=
B0

�
@�r

@�
+ �r2 jr; (17)

where B0 = jB0j. A Fourier transformation with respect to the coordinates perpendicu-88

lar to �,89

@�r

@t
=

B0

�0

@ jr
@�

+ �
 

@2

@�2 � �K2
H

!
�r; (18)

@ jr
@t

=
B0

�
@�r

@�
+ �

 
@2

@�2 � �K2
H

!
jr; (19)

where �KH is the square of the total wavenumber in the plane perpendicular to �.90

We solve these equations by assuming that the variables are proportional to ei �m��i!t.91

The dispersion relation becomes92

�m2 + �K2
H =

1
2��

n
�[�i!(� + �) + V2

A]

�
q

[�i!(� + �) + V2
A]2 + 4��(!2 + �K2

HV2
A)

�
; (20)

where VA = B0= p�0� is the Alfv·en wave speed. When � and � are su�ciently small,93

the approximate dispersion relation is94

�m2 + �K2
H � �

�i!(� + �) + V2
A

��
;

!2 + �K2
HV2

A

�i!(� + �) + V2
A

:

The �rst mode is95

�m � �i
VAp
��

:
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This is the boundary mode which decays rapidly as � increases since � and � are small.96

On the other hand, the dispersion relation of the second mode is97

�m � �
2
66664

!
VA

+ i
� + �

2

0
BBBB@

�K2
H

VA
+

!2

V3
A

1
CCCCA

3
77775 ;

which can be identi�ed as the Alfv·en waves from the real part of the wavenumber in98

the � direction, �m. The imaginary part of �m expresses the extent of the attenuation due99

to the e�ects of viscosity and di�usion. Consequently, the penetration distance of the100

Alfv·en waves �A = 1=Im[ �m] can be written as101

�A =
2

� + �

0
BBBB@

�K2
H

VA
+

!2

V3
A

1
CCCCA

�1

=
2

� + �
VA
�K2

: (21)

Here, �K2 = �K2
H + �m2

0 is the total wavenumber of the waves and �m0 = !=VA is the102

wavenumber of the waves in the � direction. Eq. (21) means attenuation of Alfv·en103

waves by viscosity and magnetic di�usion. Note that this expression includes neither104

the Brunt-V¤ais¤al¤a frequency of the stable layer nor the angular velocity of planetary105

rotation in contrast to Eq. (1) for non-magnetic cases. When we non-dimensionalize106

this penetration distance with the layer thickness d,107

�A

d
=

S
�K2d2

; S =
2VAd
� + �

; (22)

where S is the Lundquist number (Lundquist, 1952; Schae�er et al., 2012). The108

Lundquist number is a measure for the extent of penetration of the Alfven waves,109

which gives the maximum wavenumber of the waves penetrating through the layer.110

For example, the value of the Lundquist number in the Earth’s outer core is estimated111

as O(104�105).112

4. Numerical calculations113

We now compare the derived expression for the penetration distance of the Alfv·en114

waves with the neutral MHD convection structures formed in a rotating spherical shell115

calculated numerically. We consider MHD Boussinesq �uid in a spherical shell with116

inner and outer radii of ri and ro, respectively, rotating with a constant angular velocity117


. A self-gravitational force g = �
r acts on the �uid where r is the position vector118
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Figure 2: Schematic of the spherical shell system considered.

with respect to the center of the shell. The temperature distribution of the basic state119

T0(r) is the same as that used by Takehiro and Lister (2001). The inner part of the120

shell is unstably strati�ed due to uniform internal heating, while the outer part is stably121

strati�ed with a constant temperature gradient (Fig. 2).122

dT0

dr
= �

1
2

(�r + �0)
�
1 � tanh

� r � rb

a

��
+ �0; (23)

where � is a parameter expressing the temperature gradient in the lower unstable layer,123

which is given by � = Q0=(3�0Cp�), in which Q0 is the uniform internal heating and124

Cp is the speci�c heat of the Boussinesq �uid. �0 is the temperature gradient in the125

upper stable layer. r = rb is the boundary between the unstable and stable layers and a126

is the thickness of the transition layer. The length scale is chosen to be the thickness of127

the shell d = ro � ri; the time scale is the viscous di�usion time d2=�, the velocity scale128

is �=d, the temperature scale is �d2, and the scale of the magnetic �eld is the magnitude129

of the imposed basic magnetic �eld B0. The linearized equations for the disturbances130

become131

r�u = 0; r�b = 0; (24)
@u
@t

+ �k � u = �rp + (Ra=Pr)T r + r2u

+��Pm�1[(r�B0) � b + (r�b) � B0] (25)
@T
@t

+ ur
dT0

dr
= Pr�1r2T; (26)
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@b
@t

= r�(u � B0) + Pm�1r2b: (27)

The non-dimensional parameters appearing in the equations are the square root of the132

Taylor number, the Rayleigh number, the Prandtl number, the magnetic Prandtl number,133

and the Elsasser number, which are de�ned as134

� =
p

Ta =
2
d2

�
; Ra =

�
�d6

��
;

Pr =
�
�

; Pm =
�
�

; � =
B2

0

2
�0��
: (28)

The Alfv·en wave speed VA is exppressed as VA =
p

��=Pm in this system. The im-135

portant non-dimensional parameter for the penetration of the Alf·ven waves, Lundquist136

number S , is related to these non-dimensional parameters as,137

S =
2

p
Pm � � � �
1 + Pm

: (29)

A basic uniform magnetic �eld parallel to the rotation axis is imposed:138

B0 = er cos � � e� sin �; (30)

where � is the colatitude and er and e� are the unit vectors in the radial and colatitudinal139

directions, respectively.140

Fixed uniform temperature and stress-free conditions are applied to the inner and141

outer spheres. The magnetic �eld disturbance is connected with an external potential142

�eld:143

ur =
@
@r

�u�

r

�
=

@
@r

�u�

r

�
= T = 0; at r = ri; ro; (31)

b = be at r = ri; ro; (32)

where (ur; u�; u�) are the radial, colatitudinal, and azimuthal components of velocity,144

respectively, and be = r2W is the external potential �eld.145

We intorduce toroidal and poloidal potentials to express solenoidal velocity and146

magnetic �elds (e.g. Glatzmaier, 1984). The governing equations and boundary condi-147

tions for these potentials and temperature are expanded with spherical harmonic func-148

tions and Chebyshev polynomials in the horizontal and radial directions, respectively.149
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Furthermore, by assuming that the variables are proportional to exp(�t), the system150

becomes a linear eigenvalue problem for each azimuthal wavenumber with respect to151

the eigenvalue � (growth rate). For a given set of parameters, the growth rate � can152

be obtained by solving the linear eigenvalue problem. Through an iterative procedure153

with respect to Ra, a neutral solution where the real part of � vanishes is sought.154

For the numerical calculations, the total wavenumber minus the azimuthal wavenum-155

ber of the spherical harmonics is truncated at 30, while the Chebyshev polynomials are156

calculated up to the 32nd order. Moreover, in order to reduce computational time and157

resources, the poloidal velocity �eld, toroidal magnetic �eld, and temperature �eld are158

assumed to be equatorially symmetric, while the toroidal velocity �eld and poloidal159

magnetic �eld are assumed to be equatorially antisymmetric.160

We �x the values of the radius ratio to 0.4 (ri = 0:6667; ri = 1:6667). We also161

consider the case with � = 105, Pr = 1, rb = 1:2, and a = 0:05. The value of the162

temperature gradient �0 is set to 103. The magnetic Prandtl number Pm and the Elsasser163

number � are varied by setting Pm = 0:2; 1; 5 and � = 5 � 10�2; 0:1; 0:2; 0:5; 1; 2; 5.164

The azimuthal wavenumber is varied from 16 to 25.165

Figure 3 compares the meridional structures of the azimuthal velocity �eld, the166

radial components of vorticity, and the electric currents of the obtained neutral convec-167

tion modes for various values of the Elsasser number �. When the basic magnetic �eld168

is weak (� = 0:2, S = 141:4), all the variables are trapped below the stable layer. This169

is consistent with the penetration distances for non-magnetic cases Eq. (1) proposed170

by Takehiro and Lister (2001), which was O(10�2). However, it is found that the MHD171

disturbances gradually penetrate the stable layer as �, and S , is increased and the basic172

magnetic �eld is strengthened. Note that the control parameter for penetration of the173

Alfv·en waves is not � but S . In the case of Figure 3, when � is increased, the Alfv·en174

wave speed becomes larger but the di�usion parameters are �xed, then the Lundquist175

number S is increased, resulting deep penetration of the MHD disturbances. Also note176

that even the values of the Lundquist number are the same, the structures of MHD177

disturbances are not necessarily the same, since the wavenumber �m � !=VA may be178

di�erent.179

Figure 4 compares the structures of the azimuthal velocity �eld, the radial com-180
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(a) u�

(b) �r

(c) jr

Figure 3: Comparison of the meridional structures of neutral convection. � = 105, Pm = 1, and the azimuthal

wavenumber is 22. From left to right, � = 0:2; 1; 5 (S = 141:4; 316:2; 707:1), respectively. (a) the azimuthal

velocity, u�, (b) radial vorticity �r , (c) radial components of the electric current jr . The red broken lines

indicate the transition layer (r = 1:15 and 1:25).
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ponent of vorticity, and the electric current for the obtained neutral convection modes181

for various values of the Elsasser number �. The comparison is made on the cylin-182

drical surface at s = 0:9, where s is the cylinder’s radial coordinate. When the basic183

magnetic �eld is weak (� = 0:2, S = 141:4), the wavefronts are tilted from the axial184

direction (the direction of the imposed basic magnetic �eld) although the amplitudes185

of the variables are small in the stable layer compared with those in the inner unstable186

layer, resulting in a large �m0. In contrast, when the basic magnetic �eld is strengthened,187

the wavefronts of the MHD disturbances become parallel to the axial direction, mean-188

ing that �m0 decreases. This tendency can be understood by considering the dispersion189

relation of the Alfv·en waves, ! = VA �m0. When the basic magnetic �eld is strength-190

ened while the frequency of the convective motion in the lower layer remains relatively191

constant, the Alfv·en speed VA increases and �m0 decreases as a result.192

In order to compare the numerical results with the theoretical estimates obtained193

previously, the penetration distance and wavenumber in the axial direction of the neu-194

tral modes are evaluated as follows. Taking the z coordinate in the axial direction, we195

consider a variable f (z) that can be expressed as196

f (z) = Aeimz�z=� = jAjei(mz+�)�z=�;

where m is the wavenumber in the z direction, � is the characteristic penetration dis-197

tance, and � is the phase at z = 0. By sampling the data at two observational points198

z = z1 and z2, we obtain199

� = �
z1 � z2

log(j f (z1)j=j f (z2)j)
; m =

tan�1(s1) � tan�1(s2)
z1 � z2

: (33)

Here, si = tan(mzi + �). For comparison of numerical results and theoretical estima-200

tions, we choose the observational points so that z1 = zb + 0:1 and z2 = zb + 0:2 on201

the cylindrical surface where the amplitude of �r becomes maximum, where z = zb202

is the location of the bottom of the stable layer r = rb. Figures 5 and 6 compare the203

values of � and m obtained numerically with those estimated theoretically. We eval-204

uate the square of the total wave number perpendicular to the axial direction �KH as205

�K2
H = (m�=sobs)2 + (�=0:15)2. Here, m� is the azimuthal wavenumber and sobs is the206

cylindrical radial coordinate of the observational points. �=0:15 is the value of the207

12



(a) u�

(b) �r

(c) jr

Figure 4: Comparison of the cylindrical structures of azimuthal velocity components at the surface of a

cylinder of radius s = 0:9. � = 105, Pm = 1, and the azimuthal wavenumber is 22. From left to right,

� = 0:2; 1; 5 (S = 141:4; 316:2; 707:1), respectively. (a) the azimuthal velocity, u�, (b) radial vorticity �r , (c)

radial components of the electric current jr . The red broken lines indicate the transition layer (z = �0:72 and

�0:87).
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Figure 5: Comparison of propagation distance. � = 105. From left to right, Pm = 0:2; 1 and 5, respectively.

The abscissa is the propagation distance of the Alfv·en waves measured from the distribution of �r , which

is obtained through numerical calculations of neutral thermal convection. The ordinate is the theoretical

estimate of the propagation distance, which is indicated by blue crosses (21). Red squares denote the prop-

agation distance obtained by solving (20) without the approximation. Green crosses indicate the penetration

distance without a magnetic �eld derived by Takehiro and Lister (2001) (Eq. 1).

wavenumber in the cylinder’s radial direction, which is roughly measured from the208

meridional cross-sections.209

In the case with Pm = 1 (Fig. 5 center), the blue crosses are located along the210

line of y = x, indicating good agreement between the theoretical estimations and the211

numerical results for the penetration distance. In contrast, the distribution of the green212

crosses shows that the penetration distance in the non-magnetic case (1) cannot explain213

the numerical results. In the case with Pm = 0:2 (Fig.5 left), the theoretical penetration214

distance is in good agreement with, albeit a little smaller than, the numerical results. In215

the case with Pm = 5 (Fig.5 right), the theoretical penetration distance again matches216

the numerical results when � � 0:2; however, when � � 0:3, the agreement is to a lesser217

extent.218

The center panel of Fig. 6 compares the theoretically estimated and numerical219

values of the wavenumber m for the case of Pm = 1. The blue crosses are located220

along the line of y = x, indicating good agreement between the theoretical estimations221

and the numerical results for the axial wavenumber. In the case with Pm = 0:2 (Fig. 6222

left), the results for the theoretical axial wavenumber are in good agreement, although223

the theoretical values are systematically slightly smaller than the numerical values. In224

the case with Pm = 5 (Fig. 6 right), the theoretical axial wavenumber distance is in225

good agreement with the numerical values except when m � 15.226
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Figure 6: Comparison of the axial wavenumbers. � = 105. From left to right, Pm = 0:2; 1 and 5, respectively.

The abscissa is the wavenumber of the Alfv·en waves measured from the distribution of u�, which is obtained

through numerical calculations of neutral thermal convection. The ordinate is the theoretical estimate of

the axial wavenumber. Blue crosses indicate the theoretical estimate using !=VA. Red squares denote the

propagation distance obtained by solving (20) without the approximation.

5. Concluding remarks227

We investigated the in�uence of deep convection on the MHD �uid motion in the228

upper stably strati�ed layer considering the e�ects of the magnetic �eld. We found that229

the Alfv·en waves are able to propagate into the stable layer however strong the strat-230

i�cation is. We proposed an analytical expression for the penetration distance of the231

Alfv·en waves, which is proportional to the Alfv·en wave speed and inversely propor-232

tional to both the arithmetic average of viscosity and magnetic di�usion and the total233

wavenumber of the waves. The neutral modes of MHD thermal convection in a rotating234

spherical shell with an upper stably strati�ed layer and the axially uniform magnetic235

�eld were reproduced numerically. It was observed that the MHD disturbances trapped236

below the stable layer gradually penetrate into the stable layer as the imposed magnetic237

�eld is strengthened. The penetration distance and axial wavenumber of the numerical238

solutions are in good agreement with the theoretical analytic expressions proposed in239

this study.240

Note that the Alfv·en waves propagate in the direction of the basic magnetic �eld.241

When the basic magnetic �eld in the stable layer is in the horizontal direction (a toroidal242

�eld in a spherical shell geometry), the Alfv·en waves cannot propagate through the243

stable layer. Therefore, the horizontal (toroidal) basic magnetic �eld inhibits the pen-244

etration of MHD disturbances into the stable layer. On the other hand, when the basic245
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magnetic �eld is in the vertical direction (a poloidal �eld in a spherical shell geometry),246

the Alfv·en waves are able to penetrate the stable layer e�ciently.247

Also note that the rotating spherical shell model discussed in section 4 is a special248

case where the basic magnetic �eld is imposed in the direction of the rotating axis249

in order to illustrate the penetration of Alfv·en waves clearly. In general cases where250

the basic magnetic �eld does not align exactly with the rotation axis, the theoretical251

results derived in this paper suggests that penetration occurs in the direction of the252

basic magnetic �eld rather than the rotating axis.253

From a geophysical perspective an interesting variable is the radial component of254

the magnetic �eld, which can be observed at a planet’s surface. In the simpli�ed plane255

layer model used for theoretical investigation of wave properties, MHD disturbances in256

the strongly strati�ed layer are not expected to have a radial component of the magnetic257

�eld, because they are the Alfv·en waves with inhibited vertical �uid motion. However,258

in the stable layer of a spherical shell, the radial component of the magnetic �eld can259

be induced through advection of a basic magnetic �eld in the horizontal direction in260

the induction terms:261

@br

@t
� �

u�

r sin �
@B0r

@�
�

u�

r
@B0r

@�
: (34)

The results in the present study suggest that the Alfv·en waves may be excited and262

penetrate the upper stable layer in the numerical calculations of MHD dynamos in263

rotating spherical shells performed in previous works (e.g. Christensen, 2006; Chris-264

tensen and Wicht, 2008; Nakagawa, 2011). It was found in these studies that the stable265

layer �lters out and weakens the magnetic �eld generated in the convective lower layer266

by observing the radial component of the magnetic �eld. However, the toroidal compo-267

nents of velocity and the magnetic �eld, which are the main constituents of the Alfv·en268

waves, may not be attenuated by the stable layer.269

Finally, we discuss the possibility of the penetration of MHD disturbances into the270

upper stable layer of the �uid cores of the Earth and Mercury. If we assume flBr � 10�3T271

in the stable layer of the Earth’s outer core, the Alfv·en wave speed becomes VA =272

flBr=
p�� � 10�2 m/s. Then the Lundquist number becomes S � 103, when we use the273

values of the stable layer thickness thickness and the magnetic di�usivity as O(102)km274
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and � = 1m2/s, respectively, and the viscosity is neglected. From the condition �A=d =275

S=(K2d2) > 1, the maximum wavenumber KM of the waves penetrating through the276

stable layer is estimated as O(10�3) m�1. On the other hand, considering the westward277

drift component of the geomagnetic �eld (e.g. Bullard et al., 1950; Yukutake, 1962;278

Finlay and Jackson, 2003), the total horizontal wavenumber is assumed to be 10, and279

the frequency to be ! � 10�9 s�1, which makes the total wavenumber K � 10�6 m�1.280

This is much smaller than KM estimated above (the propagation distance �A � 109 m,281

which is much larger than the expected thickness of the stable layer). Therefore, some282

components of geomagnetic secular variation may be explained by the Alfv·en waves283

propagating through the stable layer excited by the deep convection.284

In contrast, since observed Mercury’s magnetic �eld is quite weak, the Lundquist285

number is small compared with the Earth. When we assume the magnetic �eld strength286

is about O(103�104) nT based on the surface value of 500nT, the Alfv·en wave speed287

is estimated as O(10�5�10�6) m/s. Although the thickness of the strati�ed layer is288

uncertain, we assume that it is comparable to the that of the �uid core thickness of289

O(106)m (Christensen and Wicht, 2008). Then the value of the Lundquist number290

becomes O(1�10), suggesting that only the global MHD disturbances are possible to291

penetrate through the strati�ed layer.292
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