uk.ac.starlink.ast
Class Polygon

java.lang.Object
  extended by uk.ac.starlink.ast.AstObject
      extended by uk.ac.starlink.ast.Mapping
          extended by uk.ac.starlink.ast.Frame
              extended by uk.ac.starlink.ast.Region
                  extended by uk.ac.starlink.ast.Polygon

public class Polygon
extends Region

Java interface to the AST Polygon class - a polygonal region within a 2-dimensional Frame. The Polygon class implements a polygonal area, defined by a collection of vertices, within a 2-dimensional Frame. The vertices are connected together by geodesic curves within the encapsulated Frame. For instance, if the encapsulated Frame is a simple Frame then the geodesics will be straight lines, but if the Frame is a SkyFrame then the geodesics will be great circles. Note, the vertices must be supplied in an order such that the inside of the polygon is to the left of the boundary as the vertices are traversed. Supplying them in the reverse order will effectively negate the polygon.

Within a SkyFrame, neighbouring vertices are always joined using the shortest path. Thus if an edge of 180 degrees or more in length is required, it should be split into section each of which is less than 180 degrees. The closed path joining all the vertices in order will divide the celestial sphere into two disjoint regions. The inside of the polygon is the region which is circled in an anti-clockwise manner (when viewed from the inside of the celestial sphere) when moving through the list of vertices in the order in which they were supplied when the Polygon was created (i.e. the inside is to the left of the boundary when moving through the vertices in the order supplied).

Licence

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public Licence as published by the Free Software Foundation; either version 2 of the Licence, or (at your option) any later version.

This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public Licence for more details.

You should have received a copy of the GNU General Public Licence along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA 02110-1301, USA

See Also:
AST Polygon

Nested Class Summary
 
Nested classes/interfaces inherited from class uk.ac.starlink.ast.Mapping
Mapping.Interpolator, Mapping.Spreader
 
Field Summary
 
Fields inherited from class uk.ac.starlink.ast.Region
OVERLAP_INSIDE, OVERLAP_NEGATE, OVERLAP_NONE, OVERLAP_OUTSIDE, OVERLAP_PARTIAL, OVERLAP_SAME, OVERLAP_UNKNOWN
 
Fields inherited from class uk.ac.starlink.ast.Mapping
LINEAR_INTERPOLATOR, LINEAR_SPREADER, NEAREST_INTERPOLATOR, NEAREST_SPREADER
 
Fields inherited from class uk.ac.starlink.ast.AstObject
AST__BAD, AST__TUNULL, pointer
 
Constructor Summary
Polygon(Frame frame, int npnt, double[] xcoords, double[] ycoords, Region unc)
          Create a Polygon.
 
Method Summary
 
Methods inherited from class uk.ac.starlink.ast.Region
getAdaptive, getBounded, getClosed, getFillFactor, getMeshSize, getNegated, getRegionBounds, getRegionFrame, getRegionPoints, getUnc, mapRegion, mask, maskB, maskD, maskF, maskI, maskL, maskS, negate, overlap, setAdaptive, setClosed, setFillFactor, setMeshSize, setNegated, setUnc, showMesh
 
Methods inherited from class uk.ac.starlink.ast.Frame
angle, axAngle, axDistance, axOffset, convert, distance, findFrame, format, getActiveUnit, getAlignSystem, getBottom, getDigits, getDigits, getDirection, getDomain, getDut1, getEpoch, getFormat, getLabel, getMatchEnd, getMaxAxes, getMinAxes, getNaxes, getNormUnit, getObsLat, getObsLon, getPermute, getPreserveAxes, getSymbol, getSystem, getTitle, getTop, getUnit, intersect, norm, offset, offset2, permAxes, pickAxes, resolve, setActiveUnit, setAlignSystem, setBottom, setDigits, setDigits, setDirection, setDomain, setDut1, setEpoch, setEpoch, setFormat, setLabel, setMatchEnd, setMaxAxes, setMinAxes, setObsLat, setObsLon, setPermute, setPreserveAxes, setSymbol, setSystem, setTitle, setTop, setUnit, unformat
 
Methods inherited from class uk.ac.starlink.ast.Mapping
decompose, getInvert, getNin, getNout, getReport, getTranForward, getTranInverse, invert, linearApprox, mapBox, mapSplit, rate, rebin, rebinD, rebinF, rebinI, resample, resampleB, resampleD, resampleF, resampleI, resampleL, resampleS, setInvert, setReport, simplify, tran1, tran2, tranGrid, tranN, tranP
 
Methods inherited from class uk.ac.starlink.ast.AstObject
annul, clear, copy, delete, equals, finalize, getAstConstantI, getB, getC, getD, getF, getI, getID, getIdent, getL, getNobject, getObjSize, getRefCount, hashCode, isThreaded, reportVersions, sameObject, set, setB, setC, setD, setF, setI, setID, setIdent, setL, show, test, tune
 
Methods inherited from class java.lang.Object
clone, getClass, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Polygon

public Polygon(Frame frame,
               int npnt,
               double[] xcoords,
               double[] ycoords,
               Region unc)
Create a Polygon. This function creates a new Polygon object and optionally initialises its attributes.

The Polygon class implements a polygonal area, defined by a collection of vertices, within a 2-dimensional Frame. The vertices are connected together by geodesic curves within the encapsulated Frame. For instance, if the encapsulated Frame is a simple Frame then the geodesics will be straight lines, but if the Frame is a SkyFrame then the geodesics will be great circles. Note, the vertices must be supplied in an order such that the inside of the polygon is to the left of the boundary as the vertices are traversed. Supplying them in the reverse order will effectively negate the polygon.

Within a SkyFrame, neighbouring vertices are always joined using the shortest path. Thus if an edge of 180 degrees or more in length is required, it should be split into section each of which is less than 180 degrees. The closed path joining all the vertices in order will divide the celestial sphere into two disjoint regions. The inside of the polygon is the region which is circled in an anti-clockwise manner (when viewed from the inside of the celestial sphere) when moving through the list of vertices in the order in which they were supplied when the Polygon was created (i.e. the inside is to the left of the boundary when moving through the vertices in the order supplied).

Notes


- A null Object pointer (AST__NULL) will be returned if this function is invoked with the AST error status set, or if it should fail for any reason.

Status Handling

The protected interface to this function includes an extra parameter at the end of the parameter list descirbed above. This parameter is a pointer to the integer inherited status variable: "int *status".

Parameters:
frame - A pointer to the Frame in which the region is defined. It must have exactly 2 axes. A deep copy is taken of the supplied Frame. This means that any subsequent changes made to the Frame using the supplied pointer will have no effect the Region.
npnt - The number of points in the Region.
xcoords - npnt-element
ycoords - npnt-element
unc - An optional pointer to an existing Region which specifies the uncertainties associated with the boundary of the Box being created. The uncertainty in any point on the boundary of the Box is found by shifting the supplied "uncertainty" Region so that it is centred at the boundary point being considered. The area covered by the shifted uncertainty Region then represents the uncertainty in the boundary position. The uncertainty is assumed to be the same for all points.

If supplied, the uncertainty Region must be of a class for which all instances are centro-symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the uncertainty Region using the supplied pointer will have no effect on the created Box. Alternatively, a NULL Object pointer may be supplied, in which case a default uncertainty is used equivalent to a box 1.0E-6 of the size of the Box being created.

The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions for equality the uncertainty Region is used to determine the tolerance on the comparison, and 2) when a Region is mapped into a different coordinate system and subsequently simplified (using astSimplify), the uncertainties are used to determine if the transformed boundary can be accurately represented by a specific shape of Region.

Throws:
AstException - if an error occurred in the AST library


Copyright © 2017 Central Laboratory of the Research Councils. All Rights Reserved.