Tutorial: Exploring Gaia data with TOPCAT and STILTS

Mark Taylor,
University of Bristol,
m.b.taylor@bristol.ac.uk

TOPCAT: http://www.starlink.ac.uk/topcat/ (version 4.6-2 recommended)
STILTS: http://www.starlink.ac.uk/stilts/ (version 3.1-5 recommended)
Mailing list: topcat-user@jiscmail.ac.uk

Contents

1 Cluster identification #1: Messier 4 in proper motion space 2
 1.1 Acquire Gaia data in the M4 region .. 2
 1.2 Identify comoving cluster ... 2
 1.3 Examine cluster members ... 3
 1.4 Determine parallax ... 3

2 Cluster identification #2: Hyades in phase space 4
 2.1 Locate Gaia TAP service ... 4
 2.2 Explore the TAP service ... 4
 2.3 Acquire astrometric data ... 4
 2.4 Calculate 3-d velocity components .. 5
 2.5 Identify Hyades graphically in 3-d velocity space 5
 2.6 Colour-magnitude diagram ... 6

3 Match Gaia and HST observations 7
 3.1 Acquire HST observations ... 7
 3.2 Crossmatch with Gaia ... 7
 3.3 Visualise the crossmatch ... 8
 3.4 Investigate and identify matches .. 8
 3.5 Alternative crossmatch: use local files .. 9

4 Local Herzsprung-Russell Diagram 10
 4.1 Acquire data from TAP service ... 10
 4.2 Plot HRD .. 10
 4.3 Exclude astrometrically suspect sources 11
 4.4 Exclude photometrically suspect sources 11
 4.5 Explore the HRD .. 11

5 Local Herzsprung-Russell Diagram using STILTS 12
 5.1 Get STILTS running ... 12
 5.2 Acquire data from TAP service ... 12
 5.3 Manipulate the downloaded table using tpipe 12
 5.4 Plot the diagram .. 13
 5.5 Use TOPCAT to refine the plot command 13
This tutorial uses data from Gaia DR2 [1] to lead you through some of the capabilities of TOPCAT and STILTS. For best results, you should have the manuals to hand: http://www.starlink.ac.uk/topcat/sun253/ and http://www.starlink.ac.uk/stilts/sun256/.

1 Cluster identification #1: Messier 4 in proper motion space

In this example we will determine the mean parallax of the stars in the globular cluster Messier 4 (M4, or NGC 6121).

1.1 Acquire Gaia data in the M4 region

1. Open the VO|Cone Search window (i.e. use the Cone Search submenu of the VO menu in the main topcat window)

2. Fill in Keywords: “gaia dr2”, and hit Find Services

3. There are a few options, that should mostly give similar results. ARI-Gaia (probably the top one) is a good choice. Select it by clicking on it, and the partial URL of the service appears in the Cone URL field

4. Object Name: “M4”, hit Resolve to fill in sky position fields

5. Radius: “0.3” (degrees)

6. Hit OK; new table is loaded into topcat main control window, with about 50 000 rows

7. Use the Graphics|Sky Plot window to see the positions on the sky

1.2 Identify comoving cluster

2. Note overdensity far from (0,0); use mouse to navigate (click little button at bottom left for navigation help)

3. Graphically select this comoving cluster as new Subset: Subsets|Draw Subset Region button, drag mouse around cluster, hit button again

4. A New Subset dialogue pops up: fill in New Subset Name: “comoving”, Add New Subset

5. Look in Subsets tab of plot window; turn All and comoving subsets off/on

6. Look in Views|Row Subsets window to see new subset
1.3 Examine cluster members

1. Go back to the Graphics|Sky Plot from section 1.1 (or open a new one)

2. In Subsets tab turn All and comoving subsets on/off

3. Plot the proper motions. In the Form tab, use the Forms menu and select the Add SkyVector item, with Delta Longitude: “pmra”, Delta Latitude: “pmdec”. The arrows will initially be much too long (units of degrees); you will have to set Unit: “scaled” (auto-scaling), then adjust to taste with the Scale slider. Zoom in so you can see some individual objects. All the cluster objects have similar proper motions, non-cluster ones have various directions, or none (no measured P.M.).

1.4 Determine parallax

1. Plot histogram of parallaxes:
 Graphics|Histogram Plot, X: “parallax”

2. In Subsets tab, make sure only subset comoving, and not All, is plotted

3. If necessary, rescale plot (or navigate with mouse)

4. Fit Gaussian to data: Forms menu in Form tab, Gaussian option.

5. Scroll to bottom of Gaussian layer description in Form tab, and read off parallax mean and S.D.

6. Invert to get distance to cluster (1000/parallax in mas = distance in parsec).

7. To do this without plotting, you can read off the mean and S.D. for parallax in the Views|Column Statistics window.

Note: careful when inverting parallaxes!
In general $r = 1/\varpi$ is not reliable because of errors. It’s OK here because we are averaging over many measurements. Rule of thumb for single measurements: if $\varpi/\sigma_\varpi > 5$ it’s probably OK. See Luri et al. 2018 [2] for full discussion.
2 Cluster identification #2: Hyades in phase space

This example locates the Hyades in 3-dimensional velocity space, using Gaia’s radial velocity observations. We can’t start this time by making a positional query (cone search), since the Hyades is very delocalised on the sky (because it’s so close). So we need to make a more sophisticated query using TAP.

2.1 Locate Gaia TAP service

1. Open the TAP window:

 ![VO Table Access Protocol (TAP) Query](image)

2. Fill in Keywords: “gaia” and hit Find Services button

3. There are several services with Gaia data in various forms; GAIA (ESA) or ARI-Gaia (Heidelberg) are good choices. The service URL appears in the field at the bottom of the window.

4. Hit the Use Service button at the bottom

2.2 Explore the TAP service

Use the TAP window to explore the tables that are present and their metadata.

1. Browse the table list on the left. The tables in the gaiadr2 schema are the ones with Gaia DR2 data.

2. Select table gaiadr2.gaia_source and look at Table and Columns tabs, to see information about available columns.

3. Look in the Service tab to see information about the service

4. Look in the Hints tab for a very basic ADQL cheat sheet

5. Type in some very simple ADQL:

 `SELECT TOP 10 ra, dec FROM gaiadr2.gaia_source`

6. Note that syntax errors (including partial or misspelt tables/columns) are highlighted in red.

7. Hit Run Query to run the query; if successful a new table is loaded

2.3 Acquire astrometric data

In the TAP window, execute this query:

```
SELECT ra, dec, pmra, pmdec, parallax, radial_velocity, bp_rp, phot_g_mean_mag + 5*log10(parallax/100) as g_abs
FROM gaiadr2.gaia_source
WHERE parallax > 15
AND parallax_over_error > 5
AND radial_velocity IS NOT NULL
```

The result should contain about 26,000 rows.

The query is for all the nearby sources (nominally within 1000/15 ≈ 66 parsec) with radial velocities (only about 7 million DR2 sources have RV) and good determinations of parallax. The fact that parallax error is ≤ 20% means that it’s OK to invert parallax to get distance. We are retrieving all the basic astrometric parameters and some photometry.

The Hyades should be in there somewhere.
2.4 Calculate 3-d velocity components

We have the astrometric quantities measured by Gaia, and want to turn them into coordinates in 3-d phase space. TOPCAT's expression language can help.

1. Open the Help|Available Functions browser to see what functions TOPCAT provides (they are listed in the manual too).

2. Look under the Gaia option to see astrometry-specific items

3. We will use the astromUVW and maybe icrsToGal and astromXYZ functions. The Examples items in the function documentation are useful; for use with the gaia_source catalogue, you can often just cut and paste.

4. Open the Views|Column Info window and choose the Columns|New Synthetic Column menu item

5. Create a new column giving Cartesian velocity components: Name: “uvw”, Expression: “astromUVW(array(ra, dec, parallax, pmra, pmdec, radial_velocity))”, Units: “km/s” That gives velocities along ICRS axes. If you want it in Galactic coordinates, wrap the whole expression in the icrsToGal(...) function.

6. Look at the new column in the Views|Data Window. It is a 3-element array; you can get the array elements using expressions uvw[0], uvw[1], uvw[2]

2.5 Identify Hyades graphically in 3-d velocity space

1. Plot points in 3-d space: Graphics|Cube Plot, X: “uvw[0]”, Y: “uvw[1]”, Z: “uvw[2]”. Note, you can type in any expression for the plot coordinates, you don’t have to just select from available columns. The uvw column itself doesn’t appear in the selection list, since it’s not a scalar.

2. Select Mode: “density” in the Form tab.

3. Now, navigate through the cube to find an overdensity. This takes a bit of practice, but it’s fun once you work out how. Click the little button at bottom left for navigation help; the most useful actions are mouse wheel (2-fingered up/down drag on some trackpads) to zoom, and right click on a dense region to recenter.

4. Navigate so only the objects in the overdense region are visible inside the wireframe - these are the Hyades.

5. Use Subsets|New Subset From Visible, Name: “hyades”, Add Subset.

6. Go back and plot this subset on the sky (Graphics|Sky Plot), or in 3-d space (Graphics|Sphere Plot, Lon: “ra”, Lat: “dec”, Radius: “1000./parallax”)
2.6 Colour-magnitude diagram

1. Plot a colour-magnitude diagram: □ Graphics|Plane Plot, X: “bp-rp”, Y: “g_abs”. Use the Axes control, Coords tab, Y Flip checkbox to flip it the right way round.

2. Hyades sit on a nice tight main sequence!

3. There are a few outliers. Click on them, see the position show up in the sky plot too. In some cases, you can see by sky position that they are non-members.

Bonus
- Can you find any other clusters in velocity space?
- Try refining the selection by localising in position space too.
- What is the mean distance to the Hyades?
- Try using Aladin and SAMP along with TOPCAT to investigate the outliers.
3 Match Gaia and HST observations

In this example we have a local catalogue from a publication by Gouliermis et al. 2006 [4], available in VizieR as J/ApJS/166/549. This contains about 100 000 sources observed by the ACS instrument on the Hubble Space Telescope at epoch \approx J2004.6 of stars in NGC346, a cluster in the Small Magellanic Cloud. We match these positions with positions in the main Gaia catalogue at J2015.5.

3.1 Acquire HST observations

There are various ways to do this, but here we will use TOPCAT’s VizieR dialogue window, which talks directly to the VizieR catalogue service.

1. Open VO|VizieR Catalogue Service window
2. Object Name: “ngc346”, and Resolve to fill in RA and Dec
3. Radius: “1” (degrees)
4. Maximum Row Count: “100000” (or some large number)
5. Catalogue selection panel: By Keyword tab
6. Fill in Keywords: “Gouliermis”
7. Select “J/ApJS/166/549”
8. Hit the OK button at the bottom. A new table with 99 079 rows should be loaded

Alternatively, you could download the table from the VizieR web page.

3.2 Crossmatch with Gaia

Now we want to find associations of the HST objects with sources from Gaia DR2. Use the CDS X-Match service from TOPCAT. This uploads a local table to the CDS X-Match service, where the match is made against the Gaia DR2 catalogue (or any other catalogue in VizieR). The resulting matched catalogue is then received as a new table in TOPCAT.

1. Open the VO|CDS Upload X-Match window
2. Fill in the fields:
 VizieR Table ID/Alias: “GAIA DR2”
 Input Table: “J_ApJS_166_549_table2” (or whatever the HST table is called)
 RA column: “RAJ2000”, **Dec column:** “DEJ2000” (should be filled in automatically)
 Radius: “1” (arcsec)
 Find Mode: “All”
3. Hit Go; within a few seconds, it should inform you that a new table has been loaded, with 22 405 rows.
4. Look at the columns of the new table (all HST followed by all Gaia) in the Views|Column Info window
5. View the new table in a Graphics|Sky Plot

Note: the match is done with Gaia coordinates rolled back (using Gaia proper motions) to J2000.0. These propagated columns are in the matched table as ra_epoch2000, dec_epoch2000.
3.3 Visualise the crossmatch

1. Open a Graphics|Sky Plot window
3. Overplot the actual matches. Add a new Pair layer: Layers|Add Pair Control and fill in:
 Table: “4xGAIA DR2” (or whatever the xmatch result table is called) and both sets of coordinates:
 Lon(2): “ra”, Lat(2): “dec” (Gaia)
4. Zoom in to look at the associations. There are too many!
5. You can fiddle around with the tab to make the plot clearer, e.g. add a Mark2 layer; change marker size, shape or colour.

Visualising the results of a crossmatch is very often a good idea, unless you’re pretty sure what you’re going to get. Here, you can see it was crucial to understand the results.

3.4 Investigate and identify matches

1. Add new columns giving RA/Dec discrepancies between HST and Gaia positions:
 Open Views|Column Info window, then define new columns using Columns|New Synthetic Column:
 Name: “deltaRa”, Expression: “3600*(ra - RAJ2000)”, Units: “arcsec”
2. Use Graphics|Plane Plot window, plot X: “deltaRa”, Y: “deltaDec”
3. Identify overdense region, select as in section 1.2, define new subset true_match.
4. Go back to the sky associations plot from the previous section, and use the Subsets tab to visualise which are the true matches.
5. Make a colour-colour diagram combining HST and Gaia photometry:
 What are the two populations?
3.5 Alternative crossmatch: use local files

The crossmatch in section 3.2 was done by sending a local file to an external service. This is often an efficient way to do it, but there are other options. Here, we will do the same crossmatch by operating on two local files with positions covering the same sky region.

1. First, retrieve Gaia data in the region of interest. Use the \texttt{VO|Cone Search} window as in section 1.1, but this time fill in \texttt{Object Name}: “ngc346”, \texttt{Radius}: “0.05” (degrees).

2. Plot the Gouliermis (from VizieR) and Gaia (from Cone Search) datasets on the sky: open the \texttt{Graphics|Sky Plot} window, fill in \texttt{RA} and \texttt{Dec} as \texttt{Lat} and \texttt{Lon} for one of the tables, then use the \texttt{Layers|Add Position Control} action to overplot the same thing for the other dataset.

3. Open the \texttt{Joins|Pair Match} window from the main control window. Default Match Criteria are OK in this case. Fill in the \texttt{Table 1} and \texttt{Table 2} details for the Gouliermis and Gaia tables. Entry Match Selection: “All matches”.

4. Hit \texttt{Go} and wait a few seconds for the match to complete.

5. When complete, a popup window will tell you, and offer to \texttt{Plot Result}. If you select this option, you will see a plot like the one from section 3.3, except that the unmatched Gaia sources are also plotted (which can be sometimes useful information).

Other matching options are available in the local match windows, including identifying objects that don’t match, matching internally within a table, matching between three or more tables, etc. Note that unlike most things in TOPCAT, crossmatching can take up significant amounts of memory, so matching multi-million-row tables can sometimes grind to a halt or fail.

Bonus

- Use the \texttt{Graphics|Histogram Plot} (as in section 1.4) to find the mean values of δRA, δDec for the true matches. If these are non-zero, why?

- The match done here is between Gaia positions at J2015.5 and HST positions taken at approximately J2004.6. When using the X-Match service in section 3.2, Gaia proper motions were automatically applied to predict the Gaia positions at J2000.0. Use the \texttt{epochProp} function in the expression language to do the match with the positions as Gaia proper motions predict for J2004.6. Does it make much difference?
4 Local Herzsprung-Russell Diagram

In this example we will use a TAP query to download all the nearby Gaia sources with good astrometry and photometry, and calculate their absolute magnitudes to construct an HR diagram, performing a couple of cleaning operations to improve the data. This procedure loosely follows Appendix C of the Gaia DR2 astrometry paper Lindegren et al. 2018 [3].

4.1 Acquire data from TAP service

1. Open the TAP window (VO Table Access Protocol (TAP) Query)

2. Select one of the Gaia services (probably the ESA one) and Use Service

3. Choose Mode: “Asynchronous” (just above the ADQL text entry panel). This query may take a minute or two, so a synchronous query might time out (with the unhelpful result, probably, “TAP response is not a VOTable”).

4. Execute the following query:

```
SELECT ra, dec, parallax, phot_g_mean_mag, bp_rp, 
astrometric_excess_noise, 
phot_bp_rp_excess_factor
FROM gaiadr2.gaia_source
WHERE parallax > 10
  AND parallax_over_error > 10
  AND phot_bp_mean_flux_over_error > 10
  AND phot_rp_mean_flux_over_error > 10
```

You should get a table with 338,833 sources; they are nominally within 100 pc, and have \(\varpi \), BP and RP with small errors. In particular, the parallax error is small enough that \(\varpi^{-1} \) is a reasonable estimate of distance.

4.2 Plot HRD

1. Add a new column calculating absolute G magnitude, using parallax: (Columns New Synthetic Column in Column Info window:
 Name: “g_abs”,
 Expression: “phot_g_mean_mag + 5*log10(parallax/100)”,
 Units: “mag”

3. Play around with different Shading Modes in Form tab.

4. Colour points using the other columns using modes Aux, Weighted. What’s the difference between the two?
4.3 Exclude astrometrically suspect sources

1. Try different weighting/aux columns to see which one can be used to exclude points in the unwanted region between the main sequence and white dwarf branch.

2. Experiment with the colour map settings (Aux Axis control) to find a suitable threshold.

3. Create a subset using an algebraic expression that excludes the spurious points: go to the Views|Row Subsets window and use the + Subsets|New Subset action: Subset Name: “astrom_ok”, Expression: “astrometric_excess_noise < 1”

4. Go back to the plot, and make sure only the astrom_ok subset is plotted (Subsets tab). Now there are fewer spurious sources.

The astrometric_excess_noise column characterises the goodness of fit of the astrometric solution to the observations. But you didn’t need to know that to improve the data like this.

4.4 Exclude photometrically suspect sources

1. Open a new Graphics|Plane Plot, with X: “bp_rp” (BP − RP colour), Y: “phot_bp_rp_excess_factor”.

The quantity on the Y axis is some measure of photometric reliability. High values are bad, but how high is colour-dependent. We will define a region in this space to exclude the unusually high values. This time we will interactively draw a polygon rather than a blob.

2. Click the Subsets|Draw Subset Polygon action

3. Select Point inclusion mode: “BELOW” in the popup

4. Click on a few points above the overdense region until the shaded area roughly covers it.

5. When you’re done, click on the button again.

6. Fill in the Subset Name field in the popup (e.g. photom_ok) and hit OK

7. Go to the Views|Row Subsets window, where you can see the new subset alongside astrom_ok.

8. Create a new subset combining the two: + Subsets|New Subset action: Subset Name: “ok” Expression: “astrom_ok && photom_ok”

9. Go back to the plot, and make sure only the ok subset is plotted (Subsets tab). Now there are fewer spurious sources.

Leave this session open, we’ll need some of it for the next section.

4.5 Explore the HRD

The photometry and astrometry in Gaia DR2 is so good that plotting a Herzsprung-Russell Diagram by following the steps above gives a lot of astrophysical information. Identify the different populations with the help of the zoom and shading options in TOPCAT: main sequence, giant branches, the double-stranded white dwarfs sequence representing the split between helium and hydrogen burning, and if you look closely a notch in the main sequence near absolute G magnitude of 10 (Jao et al 2018 [5]).
5 Local Herzsprung-Russell Diagram using STILTS

In this section we will reproduce the cleaned HRD from the previous section, but this time from the command line, though we will use some of the results of the earlier GUI activity. Using TOPCAT interactively to work out how to write STILTS scripts for later batch use like this is a common pattern of work.

5.1 Get STILTS running

1. Unlike TOPCAT, you can’t bluff your way through STILTS by pointing’n’clicking; you’ll need some documentation. Find the manual here:

 http://www.starlink.ac.uk/stilts/sun256/

 or just google for “stilts” and go to the Documentation section.

2. Make sure you have it installed. If you have topcat, you can run “java -jar topcat-full.jar -stilts ...”. More convenient (on Un*x), download the stilts script into the same directory as topcat-full.jar (or stilts.jar). We will write just “stilts” from now on.

3. Run a command:

   ```
   stilts calc expression="1+2"
   ```

 should print out “3”

4. Find the documentation for the calc command in the manual (Appendix B). Look at the Usage and Examples subsections.

5. Get command-line help by running “stilts calc help” and “stilts calc help=expression”.

5.2 Acquire data from TAP service

1. We will use the tapquery command; find the entry in the manual.

2. Go back to the TOPCAT TAP window to find the TAP URL at the bottom of the Select Service tab (value of tapurl parameter)

3. Use the ADQL from step 4 of section 4.1 (value of adql parameter).

4. Run the query and output the result to a local FITS file hrd.fits:

   ```
   stilts tapquery \
   sync=false \
   tapurl=http://gea.esac.esa.int/tap-server/tap \
   adql="SELECT ra, dec, parallax, phot_g_mean_mag, \n       phot_g_mean_mag, bp_rp \n       astrometric_excess_noise, \n       phot_bp_rp_excess_factor \n       FROM gaiadr2.gaia_source \n       WHERE parallax > 10 \n       AND parallax_over_error > 10 \n       AND phot_bp_mean_flux_over_error > 10 \n       AND phot_rp_mean_flux_over_error > 10" \
   out=hrd.fits
   ```

5.3 Manipulate the downloaded table using tpipe

We will perform some processing on the downloaded table using the tpipe command. This reads an input table, optionally performs operations on it, and writes it to output, either to a file (in the same or different format) or some other destination. It works like a Unix pipeline.

The operations are defined by adding filters such as “select” (retain only some rows) or “addcol” (add a new column). Filters are specified by adding using zero or more “cmd=” parameters on the command line, and documented in Section 6.1: “Processing Filters” of the STILTS manual.

The default output mode is write to a file, but other options such as “meta” (display column metadata), “count” (count rows) and “stats” (calculate mean, st.dev etc) are also available. Select non-default output modes using the “omode=” parameter on the command line, documented in Section 6.4: “Output Modes” of the manual.
1. Count the rows in the query result table:

```plaintext
stilts tpipe in=hrd.fits omode=count
```

2. See what columns the query result table has:

```plaintext
stilts tpipe in=hrd.fits omode=meta
```

3. Prepare an expression for a new column giving absolute magnitude (see item 1 from section 4.2)

4. Prepare expressions for rows corresponding to the astrometry and photometry selections from sections 4.3 and 4.4; go back to TOPCAT’s Subsets window, and see the expressions used to restrict the sources in the final HRD.

5. Put items 3 and 4 together to produce a plot-ready table (note use of quotes):

```plaintext
stilts tpipe in=hrd.fits \
    cmd="addcol g_abs "phot_g_mean_mag + 5*log10(parallax/100)"" \ 
    cmd="select "astrometric_excess_noise < 1"" \ 
    cmd="select "phot_bp_rp_excess_factor < polyLine(bp_rp, -0.56, 1.307, 0.03, 1.192, \ 
                                    1.51, 1.295, 4.31, 1.808)"" \ 
    out=hrd_clean.fits
```

6. Count the rows in the output file.

5.4 Plot the diagram

1. Plot the HRD on the screen using the 2d plotting command `plot2plane`:

```plaintext
stilts plot2plane layer=mark in=hrd_clean.fits \ 
    x=bp_rp y=g_abs yflip=true
```

2. By default, a “live” plot shows up on the screen: use the mouse to zoom and drag it around like in TOPCAT.

3. Output it to a graphics file instead, by adding the “out” parameter, e.g. “out=hrd.png” or “out=hrd.pdf”.

5.5 Use TOPCAT to refine the plot command

There are lots more options to the plot commands.

1. In the cleaned HRD plot from the end of section 4, select the STILTS control at the lower left. This is the command that will reproduce the plot from the command line. It probably won’t work from the command line exactly as written, because some tables and subsets only exist in TOPCAT (expected problems are shown in colour). But we have now generated the post-processed file using `tpipe`.

2. Hit the Window button near the bottom to break out the command display into a separate window. You can see all the options (including defaults) with the Formatting|Include Defaults menu item.

3. Now adjust plot options in the TOPCAT GUI and see how the command changes.

4. Get the plot looking like you want in TOPCAT, then copy and paste the details into your STILTS `plot2plane` command line.

5. Experiment with changing the appearance by modifying the script.
Bonus

Go back and reproduce all the other exercises using STILTS!

References

Acknowledgements

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.